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Abstract

Stochastic Gradient Descent (SGD) and its vari-

ants are the most used algorithms in machine

learning applications. In particular, SGD with

adaptive learning rates and momentum is the in-

dustry standard to train deep networks. Despite

the enormous success of these methods, our theo-

retical understanding of these variants in the non-

convex setting is not complete, with most of the

results only proving convergence in expectation

and with strong assumptions on the stochastic gra-

dients. In this paper, we present a high probability

analysis for adaptive and momentum algorithms,

under weak assumptions on the function, stochas-

tic gradients, and learning rates. We use it to

prove for the first time the convergence of the gra-

dients to zero in high probability in the smooth

nonconvex setting for Delayed AdaGrad with mo-

mentum.

1. Introduction

Despite the incredible popularity of stochastic gradient meth-

ods in practical machine learning applications, our theoret-

ical understanding of these methods is still not complete.

In particular, adaptive learning rates methods like Ada-

Grad (Duchi et al., 2011) have been mainly studied in the

convex domain, with few analyses in the non-convex do-

main (Li & Orabona, 2019; Ward et al., 2019). However,

even in these latter analyses, the assumptions used are very

strong and/or the results limited.

In particular, there are two main problems with the previous

analyses of Stochastic Gradient Descent (SGD) and its vari-

ants in the nonconvex setting. First, the classic analysis of

convergence for SGD in the nonconvex setting uses an anal-

ysis in expectation. However, expectation bounds do not

rule out extremely bad outcomes. As pointed out by Harvey
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et al. (2019a), it is a misconception that for the algorithms

who have expectation bounds it is enough to pick the best of

several independent runs to have a high probability guaran-

tee: It can actually be a computational inefficient procedure.

Moreover, in practical applications like deep learning, it is

often the case that only one run of the algorithm is used

since that the training process may take long time. Hence, it

is essential to get high probability bounds which guarantee

the performance of the algorithm on single runs.

Another very common assumption used in most of the previ-

ous papers is the one of bounded stochastic gradients. This

is a rather strong assumption and it is false even in the deter-

ministic optimization of a convex quadratic function, e.g.,

f(x) = x2.

In this work, we overcome both these problems. We prove

high probability convergence rates only assuming that the

noises on the gradients are well-behaved, i.e., subgaus-

sian. In this way, we allow for unbounded gradients and

unbounded noise. The weak assumptions, the nonconvex

analysis, and the adaptive learning rates make our results

particularly challenging to obtain. Indeed, high probability

bounds for bounded stochastic gradients are almost trivial

to obtain but of limited applicability. Overall, we believe

this paper is the first one to prove such guarantees.

Contributions. In this short paper, we present a high prob-

ability analysis of SGD with momentum and adaptive learn-

ing rates, with weak assumptions on function and stochastic

gradients. So, first in Theorem 1 we prove high probability

bounds for the gradients of classic momentum SGD step

size O( 1√
t
) in the nonconvex setting. Then, in Theorem 2

we prove for the first time high probability convergence

rates for the gradients of AdaGrad with momentum in the

nonconvex setting. In particular, we also show that the high

probability bounds are adaptive to the level of noise.

2. Related Work

Stochastic momentum methods. Sutskever et al. (2013)

discussed the importance of classic momentum methods in

deep learning, which is nowadays widely used in the train-

ing of neural networks. On the convergence of stochastic

momentum methods, Yang et al. (2016) studied a unified

momentum method and provided expectation bounds in
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the rate of O( 1√
T
) in both convex and nonconvex setting.

However, the results hold only for Lipschitz functions. Ga-

dat et al. (2018) provided an in-depth description of the

stochastic heavy-ball method. Moreover, for the non-convex

functions, they showed some almost sure convergence re-

sults. Loizou & Richtárik (2017) provided a general analysis

for the momentum variants of several classes of stochastic

optimization algorithms and proved the linear rate conver-

gence for quadratic and smooth functions. To the best of

our knowledge, there are no high probability bounds for

nonconvex stochastic momentum methods without using

strong assumptions.

Nonconvex convergence of adaptive methods. In recent

years, a variety of adaptive SGD algorithms have been de-

veloped to automatically tune the step size by using the

past stochastic gradients. The first adaptive algorithm was

AdaGrad Duchi et al. (2011), designed to adapt to sparse

gradients. Li & Orabona (2019) and Ward et al. (2019)

showed the convergence of variants of AdaGrad with a rate

of O(lnT/
√
T ) in the non-convex case. Moreover, Li &

Orabona (2019) showed that AdaGrad with non-coordinate-

wise learning rates is adaptive to the level of noise. Zou

et al. (2019) studied AdaGrad with a unified momentum and

Chen et al. (2019) considered a large family of Adam-like

algorithms (Kingma & Ba, 2015) including AdaGrad with

momentum. Yet, all of these works prove on bounds in ex-

pectation and most of them use the very strong assumption

of bounded stochastic gradients.

High probability bounds. The results on high probability

bounds are relatively rare compared to those in expectation,

which are easier to obtain. Kakade & Tewari (2009) used

Freeman’s inequality to prove high probability bounds for an

algorithm solving the SVM objective function. For classic

SGD, Harvey et al. (2019b) and Harvey et al. (2019a) used

a generalized Freedman’s inequality to prove bounds in non-

smooth and strongly convex case, while Jain et al. (2019)

proved the optimal bound for the last iterate of SGD with

high probability. As far as we know, there are currently

no high probability bounds for adaptive methods in the

nonconvex setting.

3. Problem Set-Up

Notation. We denote vectors and matrices by bold let-

ters. The coordinate j of a vector x is denoted by xj and as

∇f(x)j for the gradient ∇f(x). To keep the notation con-

cise, all standard operations xy,x/y,x2, 1/x,x1/2 and

max(x,y) on the vectors x, y are supposed to be element-

wise. We denote by E[·] the expectation with respect to the

underlying probability space and by Et[·] the conditional

expectation with respect to the past randomness. We use L2

norms.

Assumptions. In this paper we focus on the optimization

problem

min
x∈Rd

f(x),

where f is bounded from below and we denote its infimum

by f⋆. We do not assume the function to be convex. We

consider stochastic optimization algorithms that have access

to a noisy estimate of the gradient of f . This covers the

ubiquitous SGD (Robbins & Monro, 1951), as well mod-

ern variants as AdaGrad. We are interested in studying the

convergence of the gradients to zero, because without addi-

tional assumptions it is the only thing we can study in the

nonconvex setting.

We make the following assumption on the objective function

f(x):

(A) f is M -smooth, that is, f is differentiable and its

gradient is M -Lipschitz, i.e. ‖∇f(x) − ∇f(y)‖ ≤
M‖x− y‖, ∀x,y ∈ R

d.

Note that (A), for all x,y ∈ R
d, implies (Nesterov, 2004,

Lemma 1.2.3)

|f(y)− f(x)− 〈∇f(x),y − x〉| ≤ M

2
‖y − x‖2 .

It is easy to see that this assumption is necessary to have

the convergence of the gradients to zero. Indeed, without

smoothness the norm of the gradients does not go to zero

even in the convex case, e.g., consider the function f(x) =
|x− 1|.
We assume that we have access to a stochastic first-order

black-box oracle, that returns a noisy estimate of the gra-

dient of f at any point x ∈ R
d. That is, we will use the

following assumption:

(B1) We receive a vector g(x, ξ) such that Eξ[g(x, ξ)] =
∇f(x) for any x ∈ R

d.

We will also make the following assumption on the variance

of the noise.

(B2) (Sub-Gaussian Noise) The stochastic gradient satisfies

Eξ

[

exp
(

‖∇f(x)− g(x, ξ)‖2/σ2
)]

≤ exp(1), ∀x.

The condition (B2) has been used by Nemirovski et al.

(2009) and Harvey et al. (2019a) to prove high probabil-

ity convergence guarantees. Intuitively, it implies that the

tails of the noise distribution are dominated by tails of a

Gaussian distribution. Note that, by Jensen’s inequality,

this condition implies a bounded variance on the stochastic

gradients.
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4. A General Analysis for Algorithms with

Momentum

In this section, we will consider a generic stochastic opti-

mization algorithm with Polyak’s momentum (Polyak, 1964;

Qian, 1999; Sutskever et al., 2013), also known as the Heavy-

ball algorithm or classic momentum, see Algorithm 1.

Algorithm 1 Algorithms with Momentum

1: Input: m0 = 0, {ηt}Tt=1, 0 < µ ≤ 1, x1 ∈ R
d

2: for t = 1, . . . , T do

3: Get stochastic gradient gt = g(xt, ξt)
4: mt = µmt−1 + ηtgt

5: xt+1 = xt −mt

6: end for

Two forms of momentum, but not equivalent. First, we

want to point out that there two forms of Heavyball algo-

rithms are possible. The first one is in Algorithm 1, while

the second one is

mt = µmt−1 + gt,

xt+1 = xt − ηtmt .
(1)

This second is used in many practical implementation, see,

for example, PyTorch (Paszke et al., 2019). It would seem

that there is no reason to prefer one over the other. However,

here we argue that the classic form of momentum is the

right one if we want to use adaptive learning rates. To see

why, let’s unroll the updates in both cases. Using the update

in Algorithm 1, we have

xt+1 = xt − ηtgt − µηt−1gt−1 − µ2ηt−1gt−2 . . . ,

while using the update in (1), we have

xt+1 = xt − ηtgt − µηtgt−1 − µ2ηtgt−2 . . . .

In words, in the first case the update is composed by a sum

of weighted gradients, each one multiplied by a learning

rate we decided in the past. On the other hand, in the update

(1) the update is composed by a sum of weighted gradients,

each one multiplied by the current learning rate. From the

analysis point of view, the second update destroys the in-

dependence between the past and the future, introducing a

dependency that breaks our analysis, unless we introduce

very strict conditions on the gradients. On the other hand,

the update in Algorithm 1 allows us to carry out the anal-

ysis because each learning rate was chosen only with the

knowledge of the past. Note that this is known problem

in adaptive algorithms: the lack of independence between

past and present is exactly the reason why Adam fails to

converge on simple 1d convex problems, see for example

the discussion in Savarese et al. (2019).

It is interesting to note that usually people argue that these

two types updates for momentum are usually considered

equivalent. This seems indeed true only if the learning rates

are not adaptive.

Assumptions on learning rates. Note that in the pseudo-

code we do not specify the learning rates ηt ∈ R
d. In fact,

our analysis covers the case of generic learning rates and

adaptive ones too. We only need the following assumptions

on the stepsizes ηt:

(C1) ηt is non-increasing, i.e., ηt+1 ≤ ηt, ∀t.

(C2) ηt is independent with ξt.

The first assumption is very common (e.g., Duchi et al.,

2011; Reddi et al., 2018; Li & Orabona, 2019; Chen et al.,

2019; Zhou et al., 2018). Indeed, AdaGrad has the non-

increasing step sizes by the definition. Also, Reddi et al.

(2018) have claimed that the main issue of the divergences

of Adam and RMSProp lies in the positive definiteness of

1/ηt − 1/ηt−1.

The need of the second assumption is technical and shared

by similar analysis (Li & Orabona, 2019; Savarese et al.,

2019). Indeed, Li & Orabona (2019) showed that delayed

step sizes can avoid the possible deviation brought by the

step sizes that include the current noise.

High probability guarantee. Adaptive learning rates and

in general learning rates that are decided using previous gra-

dients become stochastic variables. This makes the high

probability analysis more complex. Hence, we use a new

concentration inequality for martingales in which the vari-

ance is treated as a random variable, rather than a deter-

ministic quantity. We use this concentration in the proof of

Lemma 2. Our proof, in the Appendix, merges ideas from

the related results in Beygelzimer et al. (2011, Theorem 1)

and Lan et al. (2012, Lemma 2). A similar result has also

been shown by Jin et al. (2019, Lemma 6).

Lemma 1. Assume that Z1, Z2, ..., ZT is a martingale

difference sequence with respect to ξ1, ξ2, ..., ξT and

Et

[

exp(Z2
t /σ

2
t )
]

≤ exp(1) for all 1 ≤ t ≤ T , where

σt is a sequence of random variables with respect to

ξ1, ξ2, . . . , ξt−1. Then, for any fixed λ > 0 and δ ∈ (0, 1),
with probability at least 1− δ, we have

T
∑

t=1

Zt ≤
3

4
λ

T
∑

t=1

σ2
t +

1

λ
ln

1

δ
.

Main result. We can now present our general lemma, that

allows to analyze SGD with momentum with adaptive learn-

ing rates. We will then instantiate it for particular examples.
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Lemma 2. Assume (A, B1, B2, C1, C2). Then, for any

δ ∈ (0, 1), with probability at least 1 − δ, the iterates of

Algorithm 1 satisfy

T
∑

t=1

〈ηt,∇f(xt)
2〉 ≤ 3‖η1‖σ2(1− µT )2

(1− µ)2
ln

1

δ

+ 2(f(x1)− f⋆) +
M(3− µ)

1− µ

T
∑

t=1

‖ηtgt‖2 .

Lemma 2 accomplishes the task of upper bounding the inner

product
∑T

t=1〈ηt∇f(xt),mt〉. Then, it is easy to lower

bound the l.h.s by
∑T

t=1〈ηT ,∇f(xt)
2〉 using the assump-

tion (C1), followed by the upper bound of
∑T

t=1 ‖ηtgt‖2
based on the setting of ηt.

4.1. SGD with Momentum with 1√
t

Learning Rates

As a warm-up, we now use Lemma 2 to prove a high prob-

ability convergence guarantee for the simple case of deter-

ministic learning rates of ηt,i =
c√
t
.

Theorem 1. Let T the number of iterations of Algorithm 1.

Assume (A, B1, B2). Set step size ηt as ηt,i = c√
t
, i =

1, · · · , d, where c ≤ 1−µT

4M(3−2µ) . Then, for any δ ∈ (0, 1),

with probability at least 1− δ, the iterates of Algorithm 1

satisfy

min
1≤t≤T

‖∇f(xt)‖2 ≤ 4(f(x1)− f⋆)

c
√
T

+
6(1− µT )2σ2

(1− µ)2
√
T

+
4(3− µ)cMσ2 ln 2Te

δ lnT

(1− µ)
√
T

.

The proof is in Appendix.

4.2. AdaGrad with Momentum

Now, we are going to prove the convergence rate of a variant

AdaGrad in which we use momentum and learning rates

that do not contain the current gradient. That is, the step

sizes are defined as ηt = (ηt,j)j=1,...,d

ηt,j =
α

√

β +
∑t−1

i=1 g
2
i,j

, j = 1, · · · , d, (2)

where α, β > 0. Removing the current gradient from

the learning rate was proposed in Li & Orabona (2019);

Savarese et al. (2019). Following the naming style in

(Savarese et al., 2019), we denote this variant by Delayed

AdaGrad.

Obviously, (2) satisfies (C1) and (C2). Hence, we are able

to employ Lemma 2 to analyze this variant. Moreover, for

Delayed AdaGrad, we upper bound
∑T

t=1 ‖ηtgt‖2 with the

following lemma, whose proof is in the Appendix.

Lemma 3. Assume (A, B1, B2). Let ηt set as in (2), where

α, β > 0. Then, for any δ ∈ (0, 1), with probability at least

1− δ, we have

T
∑

t=1

‖ηtgt‖2 ≤ 4dα2σ2

β
ln

2Te

δ
+

4α√
β

T
∑

t=1

〈ηt,∇f(xt)
2〉

≤ 2α2d ln





√

β +
2Tσ2 ln 2Te

δ

d
+

√

√

√

√

2

d

T
∑

t=1

‖∇f(xt)‖2


 .

We now present the convergence guarantee for Delayed

AdaGrad with momentum.

Theorem 2 (Delayed AdaGrad with Momentum). Assume

(A, B1, B2). Let ηt set as in (2), where α, β > 0 and

4α ≤
√
β(1−µ)2

2M(1+µ) . Then, for any δ ∈ (0, 1), with probability

at least 1− δ, the iterates of Algorithm 1 satisfy

min
1≤t≤T

‖∇f(xt)‖2

≤ 1

T
max

(

4C(T )2

α2
,
C(T )

α

√

2β + 4Tσ2 ln
3Te

δ

)

,

where C(T ) = O





1
α +

d

(

α+σ2

(

α ln T
δ
+

ln 1
δ

1−µ

))

1−µ



.

Adaptivity to Noise. Observe that when σ = 0, the con-

vergence rate recovers the rate of Gradient Descent if O( 1
T )

with a constant learning rate. On the other hand, in the noisy

case, it matches the rate of SGD O( σ√
T
) with the optimal

worst-case learning rate of O( 1
σ
√
t
). In other words, with a

unique learning rate, we recover two different optimal con-

vergence rates that requires two different learning rates and

the knowledge of σ. This adaptivity of Delayed AdaGrad

was already proved in Li & Orabona (2019), but only in

expectation and without a momentum term.

Dependency on µ. Observe that the convergence upper

bound increases over µ ∈ (0, 1) and the optimal upper

bound is achieved when taking the momentum parameter

µ = 0. In words, the algorithms without momentums have

the best theoretical results. This is a known caveat for this

kind of analysis and a similar behavior w.r.t. µ is present,

e.g., in Zou et al. (2018, Theorem 1) for algorithms with

Polyak’s momentum.

5. Conclusion and Future Work.

In this work, we present a high probability analysis of adap-

tive SGD with Polyak’s momentum in the nonconvex setting.

Without using the common assumption of bounded gradi-

ents nor bounded noise, we give the high probability bound
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for SGD with Polyak’s momentum with step size O( 1√
t
)

and for Delayed AdaGrad with momentum. In particular, to

the best of our knowledge, this is the first high probability

convergence guarantee for adaptive methods.

In the future, we plan to extend our results to more adaptive

methods, such as Adam and AMSGrad (Tieleman & Hinton,

2012). Moreover, we will explore other forms of momen-

tum such as exponential moving average and Nesterov’s

momentum (Nesterov, 1983).
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A. Appendix

A.1. Details of Section 4

Proof of Lemma 1. Set Z̃t = Zt/σt. By the assumptions of Zt and σt, we have

Et[Z̃t] =
1

σt
Et[Zt] = 0 and Et

[

exp
(

Z̃2
t

)]

≤ exp(1) .

By Jensen’s inequality, it follows that for any c ∈ [0, 1],

Et

[

exp
(

cZ̃2
t

)]

= Et

[(

exp
(

Z̃2
t

))c]

≤
(

Et

[

exp
(

Z̃2
t

)])c

≤ exp(c) . (3)

Also it can be verified that exp(x) ≤ x+ exp(9x2/16) for all x, hence for |κ| ∈ [0, 4/3] we get

Et

[

exp
(

κZ̃t

)]

≤ Et

[

exp
(

9κ2Z̃2
t /16

)]

≤ exp
(

9κ2/16
)

≤ exp
(

3κ2/4
)

, (4)

where in the second inequality, we used (3). Besides, kx ≤ 3k2/8 + 2x2/3 holds for any k and x. Hence for |κ| ≥ 4/3, we

get

Et

[

exp
(

κZ̃t

)]

≤ exp
(

3κ2/8
)

Et

[

exp
(

2Z̃2
t /3
)]

≤ exp
(

3κ2/8 + 2/3
)

≤ exp
(

3κ2/4
)

, (5)

where in the second inequality we used (3). Combining (4) and (5), we get ∀κ,

Et

[

exp
(

κZ̃t

)]

≤ exp
(

3κ2/4
)

. (6)

Note that the above analysis for (6) still hold when κ is a random variable with respect to ξ1, ξ2, . . . , ξt−1. So for Zt, we

have Et [exp (λZt)] ≤ exp
(

3λ2σ2
t /4
)

, λ > 0.

Define the random variables Y0 = 1 and Yt = Yt−1 exp
(

λZt − 3λ2σ2
t /4
)

, 1 ≤ t ≤ T . So, we have EtYt =

Yt−1 exp
(

−3λ2σ2
t /4
)

· Et [exp (λZt)] ≤ Yt−1. Now, taking full expectation over all variables ξ1, ξ2, . . . , ξT , we have

EYT ≤ EYT−1 ≤ · · · ≤ EY0 = 1 .

By Markov’s inequality, P
(

YT ≥ 1
δ

)

≤ δ, and YT = exp
(

λ
∑T

t=1 Zt − 3
4λ

2
∑T

t=1 σ
2
t

)

, we have

P

(

YT ≥ 1

δ

)

= P

(

λ

T
∑

t=1

Zt −
3

4
λ2

T
∑

t=1

σ2
t ≥ ln

1

δ

)

= P

(

T
∑

t=1

Zt ≥
3

4
λ

T
∑

t=1

σ2
t +

1

λ
ln

1

δ

)

,≤ δ,

which completes the proof.

To prove Lemma 2, we first need the following technical Lemma.

Lemma 4. ∀T ≥ 1, it holds

T
∑

t=1

at

t
∑

i=1

bi =

T
∑

t=1

bt

T
∑

i=t

ai and

T
∑

t=1

at

t−1
∑

i=0

bi =

T−1
∑

t=0

bt

T
∑

i=t+1

ai .

Proof. We prove these equalities by induction. When T = 1, they obviously hold. Now, for k < T , assume that
∑k

t=1 at
∑t

i=1 bi =
∑k

t=1 bt
∑k

i=t ai. Then, we have

k+1
∑

t=1

at

t
∑

i=1

bi =
k
∑

t=1

at

t
∑

i=1

bi + ak+1

k+1
∑

i=1

bi =
k
∑

t=1

bt

k
∑

i=t

ai + ak+1

k
∑

i=1

bi + ak+1bk+1

=

k
∑

t=1

bt

k+1
∑

i=t

ai + ak+1bk+1 =

k+1
∑

t=1

bt

k+1
∑

i=t

ai .
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Hence, by induction, the equality is proved.

Similarly, for second equality assume that for k < T we have
∑k

t=1 at
∑t−1

i=0 bi =
∑k−1

t=0 bt
∑k

i=t+1 ai. Then, we have

k+1
∑

t=1

at

t−1
∑

i=0

bi =

k
∑

t=1

at

t−1
∑

i=0

bi + ak+1

k
∑

i=0

bi =

k−1
∑

t=0

bt

k
∑

i=t+1

ai + ak+1

k−1
∑

i=0

bi + ak+1bk

=

k−1
∑

t=0

bt

k+1
∑

i=t+1

ai + ak+1bk =

k
∑

t=0

bt

k+1
∑

i=t+1

ai .

By induction, we finish the proof.

Proof of Lemma 2. By the smoothness of f and the definition of xt+1, we have

f(xt+1)− f(xt) ≤ −〈∇f(xt),mt〉+
M

2
‖mt‖2 . (7)

We now upper bound −〈∇f(xt),mt〉.
− 〈∇f(xt),mt〉
= −µ〈∇f(xt),mt−1〉 − 〈∇f(xt),ηtgt〉
= −µ〈∇f(xt−1),mt−1〉 − µ〈∇f(xt)−∇f(xt−1),mt−1〉 − 〈∇f(xt),ηtgt〉
≤ −µ〈∇f(xt−1),mt−1〉+ µ‖∇f(xt)−∇f(xt−1)‖‖mt−1‖ − 〈∇f(xt),ηtgt〉
≤ −µ〈∇f(xt−1),mt−1〉+ µM‖mt−1‖2 − 〈∇f(xt),ηtgt〉,

where the second inequality is due to the smoothness of f . Hence, iterating the inequality we have

−〈∇f(xt),ηtmt〉 ≤ −µ2〈∇f(xt−2),mt−2〉+ µ2M‖mt−2‖2 + µM‖mt−1‖2

− µ〈∇f(xt−1),ηt−1gt−1〉 − 〈∇f(xt),ηtgt〉

≤ M

t−1
∑

i=1

µt−i‖mi‖2 −
t
∑

i=1

µt−i〈∇f(xi),ηigi〉 .

Thus, denoting by ǫt = gt −∇f(xt) and summing (7) over t from 1 to T , we obtain

f⋆ − f(x1) ≤ f(xT+1)− f(x1)

≤ M

T
∑

t=1

t−1
∑

i=1

µt−i‖mi‖2 −
T
∑

t=1

t
∑

i=1

µt−i〈∇f(xi),ηigi〉+
T
∑

t=1

M

2
‖mt‖2

≤ M

T
∑

t=1

t−1
∑

i=1

µt−i‖mi‖2 −
T
∑

t=1

〈ηt,∇f(xt)
2〉 −

T
∑

t=1

t
∑

i=1

µt−i〈∇f(xi),ηiǫi〉

+

T
∑

t=1

M

2
‖mt‖2 .

By Lemma 4, we have

M

T
∑

t=1

t−1
∑

i=1

µt−i‖mi‖2 ≤ M

1− µ

T
∑

t=1

‖mt‖2 .

Also, by Lemma 4, we have

−
T
∑

t=1

t
∑

i=1

µt−i〈∇f(xi),ηiǫi〉 = −
T
∑

t=1

µ−t〈∇f(xt),ηtǫt〉
T
∑

i=t

µi

= − 1

1− µ

T
∑

t=1

〈∇f(xt),ηtǫt〉(1− µT−t+1) , ST .
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We then upper bound ST . Denote by Lt := − 1−µT−t+1

1−µ 〈∇f(xt),ηtǫt〉, and Nt :=
(1−µT−t+1)2

(1−µ)2 ‖ηt∇f(xt)‖2σ2. Using

the assumptions on the noise, for any 1 ≤ t ≤ T , we have

exp

(

L2
t

Nt

)

≤ exp

(‖ηt∇f(xt)‖2‖ǫt‖2(1− µT−t+1)2/(1− µ)2

Nt

)

= exp

(‖ǫt‖2
σ2

)

≤ exp(1) .

We can also see that for any t, Et[Lt] = − 1−µT−t+1

1−µ

∑d
i=1 ηt,i∇f(xt)iEt[ǫt,i] = 0. Thus, from Lemma 1, with probability

at least 1− δ, any λ > 0, we have

ST =
T
∑

t=1

Lt ≤
3

4
λ

T
∑

t=1

Nt +
1

λ
ln

1

δ
≤ 3λ(1− µT )2

4(1− µ)2

T
∑

t=1

‖ηt∇f(xt)‖2σ2 +
1

λ
ln

1

δ

≤ 3λ‖η1‖(1− µT )2

4(1− µ)2

T
∑

t=1

〈ηt,∇f(xt)
2〉σ2 +

1

λ
ln

1

δ
.

Finally, we upper bound
∑T

t=1 ‖mt‖2. From the convexity of ‖ · ‖2, we have

‖mt‖2 =

∥

∥

∥

∥

µmt−1 + (1− µ)
ηtgt

1− µ

∥

∥

∥

∥

2

≤ µ‖mt−1‖2 +
1

1− µ
‖ηtgt‖2 .

Summing over t from 1 to T , we have

T
∑

t=1

‖mt‖2 ≤
T
∑

t=1

µ‖mt−1‖2 +
1

1− µ

T
∑

t=1

‖ηtgt‖2

=

T−1
∑

t=1

µ‖mt‖2 +
1

1− µ

T
∑

t=1

‖ηtgt‖2

≤
T
∑

t=1

µ‖mt‖2 +
1

1− µ

T
∑

t=1

‖ηtgt‖2,

where in the first equality we used m0 = 0. Reordering the terms, we have that

T
∑

t=1

‖mt‖2 ≤ 1

(1− µ)2

T
∑

t=1

‖ηtgt‖2 .

Combining things together, and taking λ = 2(1−µ)2

3‖η1‖(1−µT )2σ2 , with probability at least 1− δ, we have

f⋆ − f(x1) ≤
1

λ
ln

1

δ
+

T
∑

t=1

[(

M

2
+

M

1− µ

)

‖ηtgt‖2 −
(

1− 3λ‖η1‖(1− µT )2σ2

4(1− µ)2

)

〈ηt,∇f(xt)
2〉
]

=
3‖η1‖(1− µT )2σ2

2(1− µ)2
ln

1

δ
+

T
∑

t=1

[

(3− µ)M

2(1− µ)
‖ηtgt‖2 −

1

2
〈ηt,∇f(xt)

2〉
]

.

Rearranging the terms, we get the stated bound.

A.2. Details of Section 4.1

The proof of this Theorem 1 makes use of the following additional Lemma on the tail of sub-gaussian noise.

Lemma 5. Assume B2, then for any δ ∈ (0, 1), with probability at least 1− δ, we have

max
1≤t≤T

‖gt −∇f(xt)‖2 ≤ σ2 ln
Te

δ
.
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Proof. By Markov’s inequality, for any A > 0,

P

(

max
1≤t≤T

‖gt −∇f(xt)‖2 > A

)

= P

(

exp

(

max1≤t≤T ‖gt −∇f(xt)‖2
σ2

)

> exp

(

A

σ2

))

≤ exp

(

− A

σ2

)

E

[

exp

(

max1≤t≤T ‖gt −∇f(xt)‖2
σ2

)]

= exp

(

− A

σ2

)

E

[

max
1≤t≤T

exp

(‖gt −∇f(xt)‖2
σ2

)]

≤ exp

(

− A

σ2

) T
∑

t=1

E

[

exp

(‖∇f(xt)− gt‖2
σ2

)]

≤ exp

(

− A

σ2
+ 1

)

T .

Proof of Theorem 1. With the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, we have

T
∑

t=1

‖ηtgt‖2 =

T
∑

t=1

η2t ‖gt‖2 ≤
T
∑

t=1

2η2t ‖∇f(xt)‖2 +
T
∑

t=1

2η2t ‖gt −∇f(xt)‖2

≤
T
∑

t=1

2η2t ‖∇f(xt)‖2 + max
1≤t≤T

‖gt −∇f(xt)‖2
T
∑

t=1

2η2t .

By Lemma 5, Lemma 2 and the union bound, we have that with probability at least 1− δ,

ηT
2

T
∑

t=1

‖∇f(xt)‖2 ≤
(

1− 2M(3− µ)

1− µ
η1

) T
∑

t=1

ηt‖∇f(xt)‖2

≤ 2(f(x1)− f⋆) +
2(3− µ)c2Mσ2 ln 2Te

δ lnT

1− µ
+

3c(1− µT )2σ2

(1− µ)2
ln

1

δ
.

Rearranging the terms and lower bounding
∑T

t=1 ‖∇f(xt)‖2 by T ·min1≤t≤T ‖∇f(xt)‖2, we have the stated bound.

A.3. Details of Section 4.2

For the proof of Lemma 3, we first need the following technical Lemma.

Lemma 6. Let ai ≥ 0, · · · , T and f : [0,+∞) → [0,+∞) non-increasing function. Then

T
∑

t=1

atf

(

a0 +

t
∑

i=1

ai

)

≤
∫

∑T
t=0

at

a0

f(x)dx .

Proof. Denote by st =
∑t

i=0 ai. Then, we have

aif(si) =

∫ si

si−1

f(si)dx ≤
∫ si

si−1

f(x)dx .

Summing over i = 1, · · · , T , we have the stated bound.

Proof of Lemma 3. First, we separate
∑T

t=1 ‖ηtgt‖2 into two terms:

T
∑

t=1

‖ηtgt‖2 =

T
∑

t=1

‖ηt+1gt‖2 +
T
∑

t=1

〈η2
t − η2

t+1, g
2
t 〉 .
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Then, we proceed

T
∑

t=1

〈η2
t − η2

t+1, g
2
t 〉 =

d
∑

i=1

T
∑

t=1

(η2t,i − η2t+1,i)g
2
t,i

≤
d
∑

i=1

T
∑

t=1

2ηt,ig
2
t,i(ηt,i − ηt+1,i)

≤ 2

d
∑

i=1

max
1≤t≤T

ηt,ig
2
t,i

T
∑

t=1

(ηt,i − ηt+1,i)

≤ 2

d
∑

i=1

η1,i max
1≤t≤T

ηt,ig
2
t,i

≤ 4
d
∑

i=1

η1,i max
1≤t≤T

ηt,i
(

g2t,i −∇f(xt)
2
i

)

+ 4

d
∑

i=1

η1,i

T
∑

t=1

ηt,i∇f(xt)
2
i

≤ 4

d
∑

i=1

η21,i max
1≤t≤T

|g2t,i −∇f(xt)
2
i |+ 4

d
∑

i=1

η1,i

T
∑

t=1

ηt,i∇f(xt)
2
i

≤ 4dα2

β
max
1≤t≤T

‖gt −∇f(xt)‖2 +
4α√
β

T
∑

t=1

〈ηt,∇f(xt)
2〉 . (8)

Using Lemma 5 on (8), for δ ∈ (0, 1), with probability at least 1− δ
2 , we have

T
∑

t=1

〈η2
t − η2

t+1, g
2
t 〉 ≤

4dα2σ2

β
ln

2Te

δ
+

4α√
β

T
∑

t=1

〈ηt,∇f(xt)
2〉 .

We now upper bound
∑T

t=1 ‖ηt+1gt‖2:

T
∑

t=1

‖ηt+1gt‖2 =

d
∑

i=1

T
∑

t=1

α2g2t,i

β +
∑t

j=1 g
2
j,i

≤
d
∑

i=1

α2 ln

(

β +
T
∑

t=1

g2t,i

)

≤ α2d ln

(

β +
1

d

d
∑

i=1

T
∑

t=1

g2t,i

)

= 2α2d ln





√

√

√

√β +
1

d

T
∑

t=1

‖gt‖2




≤ 2α2d ln





√

β +
2T

d
max
1≤t≤T

‖gt −∇f(xt)‖2 +

√

√

√

√

2

d

T
∑

t=1

‖∇f(xt)‖2


 , (9)

where in the first inequality we used Lemma 6 and in the second inequality we used Jensen’s inequality. Then using

Lemma 5 on (9), with probability at least 1− δ
2 , we have

T
∑

t=1

‖ηt+1gt‖2 ≤ 2α2d ln





√

β +
2Tσ2

d
ln

2Te

δ
+

√

√

√

√

2

d

T
∑

t=1

‖∇f(xt)‖2


 .

Putting things together, we have the stated bound.



A High Probability Analysis of Adaptive SGD with Momentum

Finally, to prove Theorem 2, we need the two following Lemmas.

Lemma 7 (Lemma 6 in Li & Orabona (2019)). Let x ≥ 0, A,C,D ≥ 0, B > 0, and x2 ≤ (A+Bx)(C +D ln(A+Bx)).
Then.

x < 32B3D2 + 2BC + 8B2D
√
C +A/B .

Lemma 8 (Lemma 5 in Li & Orabona (2019)). If x ≥ 0, and x ≤ C
√
A+Bx, then x ≤ max

(

2BC2, C
√
2A
)

.

Proof of Theorem 2. By Lemma 2 and Lemma 3, for δ ∈ (0, 1), with probability at least 1− 2
3δ, we have

(

1− 4αM(3− µ)√
β(1− µ)

) T
∑

t=1

〈ηt,∇f(xt)
2〉

≤ 2(f(x1)− f⋆) +
M(3− µ)

1− µ

(

K +
4dα2σ2

β
ln

3Te

δ

)

+
3‖η1‖σ2(1− µT )2

(1− µ)2
ln

3

δ
.

where K denotes 2α2d ln

(

√

β + 2Tσ2

d ln 2Te
δ +

√

2
d

√

∑T
t=1 ‖∇f(xt)‖2

)

for conciseness.

Rearranging the terms, we have

T
∑

t=1

〈ηt,∇f(xt)
2〉

≤ 1

1− 4αM(3−µ)√
β(1−µ)

[

2(f(x1)− f⋆) +
M(3− µ)

1− µ

(

K +
4dα2σ2

β
ln

3Te

δ

)

+
3‖η1‖σ2(1− µT )2

(1− µ)2
ln

3

δ

]

≤ 4(f(x1)− f⋆) +
2M(3− µ)

1− µ

(

K +
4dα2σ2

β
ln

3Te

δ

)

+
3‖η1‖σ2(1− µT )2

(1− µ)2
ln

3

δ

, C(T ),

where in the second inequality we used 4α ≤
√
β(1−µ)

2M(3−µ) . Also, we have

T
∑

t=1

〈ηt,∇f(xt)
2〉 ≥

T
∑

t=1

〈ηT ,∇f(xt)
2〉

=

d
∑

i=1

α
∑T

t=1 ∇f(xt)
2
i

√

β +
∑T

t=1 g
2
t,i

≥
d
∑

i=1

α
∑T

t=1 ∇f(xt)
2
i

√

β + 2
∑T

t=1 ∇f(xt)2i + 2
∑T

t=1(gt,i −∇f(xt)i)2

≥
d
∑

i=1

α
∑T

t=1 ∇f(xt)
2
i

√

β + 2
∑d

i=1

∑T
t=1 ∇f(xt)2i + 2

∑d
i=1

∑T
t=1(gt,i −∇f(xt)i)2

≥ α
∑T

t=1 ‖∇f(xt)‖2
√

β + 2
∑T

t=1 ‖∇f(xt)‖2 + 2T max1≤t≤T ‖gt −∇f(xt)‖2
.

By Lemma 5, with probability at least 1− δ, we have

T
∑

t=1

‖∇f(xt)‖2 ≤ C(T )

α
×

√

√

√

√β + 2

T
∑

t=1

‖∇f(xt)‖2 + 2Tσ2 ln
3Te

δ
. (10)
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RHS of (10) ≤ C(T )

α
×





√

β + 2Tσ2 ln
3Te

δ
+

√

√

√

√2

T
∑

t=1

‖∇f(xt)‖2




≤



C +D ln



A+B

√

√

√

√

T
∑

t=1

‖∇f(xt)‖2






×



A+B

√

√

√

√

T
∑

t=1

‖∇f(xt)‖2


 , (11)

where A =
√

β + 2Tσ2 ln 3Te
δ , B =

√
2, C = 4(f(x1)−f⋆)

α + 8M(3−µ)dασ2

β(1−µ) ln 3Te
δ + 3d(1−µT )2σ2

β(1−µ)2 ln 3
δ and D =

4αdM(3−µ)
1−µ . Using Lemma 7, we have that

√

√

√

√

T
∑

t=1

‖∇f(xt)‖2 ≤ 32B3D2 + 2BC + 8B2D
√
C +

A

B
.

We use this upper bound in the logarithmic term of (11). Thus, we have (10) again, this time with

C(T ) = C +D ln(2A+ 32B4D2 + 2B2C + 8B3D
√
C)

= O





1

α
+

d
(

α+ σ2
(

α ln T
δ +

ln 1
δ

1−µ

))

1− µ



 .

Solving (11) by Lemma 8 and lower bounding
∑T

t=1 ‖∇f(xt)‖2 by T min1≤t≤T ‖∇f(xt)‖2, we get the stated bound.


